Conference

Sustainable Diet for a Healthier and Happier Future 24 September 2011

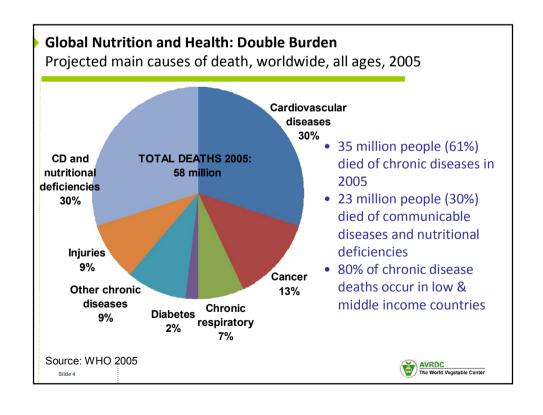
Vegetables for Combating Global Nutrition Problems

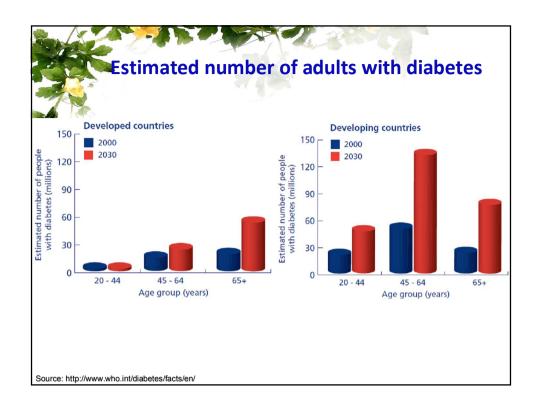
Ray-Yu Yang

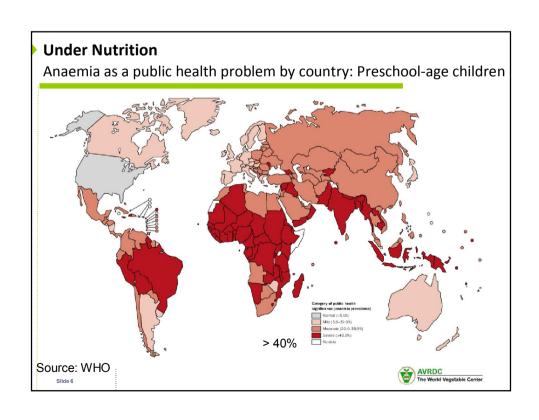
Nutritionist

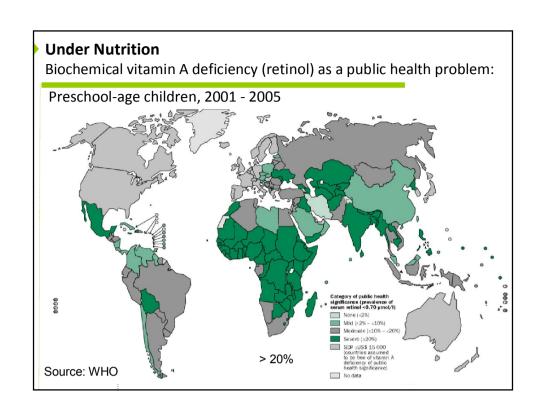
AVRDC - The World Vegetable Center, Tainan, Taiwan

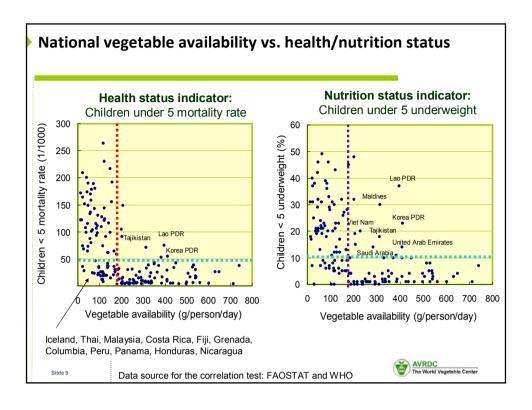
ray-yu.yang@worldveg.org

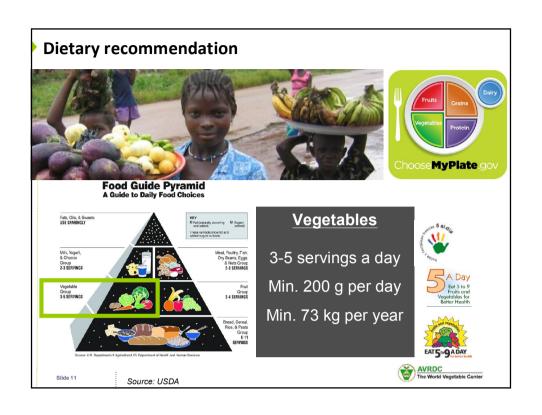

Slide

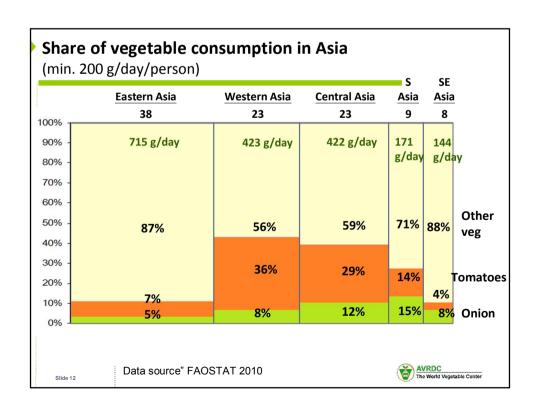

Outline

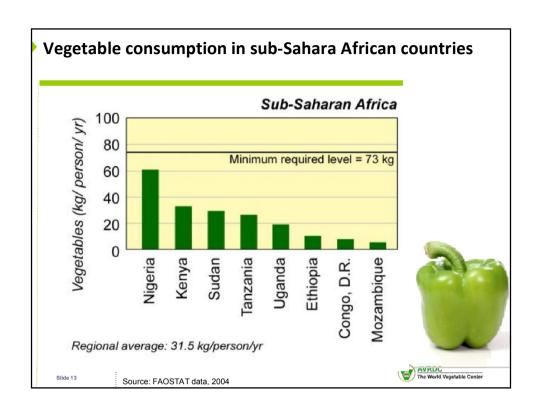

- 1. Global nutrition: double burden
- 2. Vegetable production, consumption and health benefits
- 3. AVRDC mission and research themes
- 4. Approaches to food security, diversity and value addition
 - Vegetable germplasm
 - Indigenous vegetables and nutrition properties
 - Breeding for nutrition
 - Agricultural interventions for better nutrition and health
- 5. Challenges: evidence base and scaling up


AVRDC
The World Vegetable Center

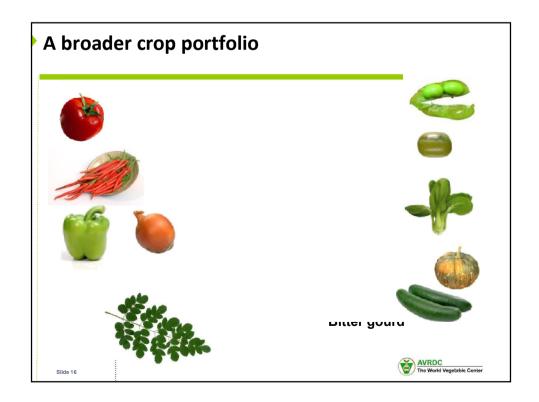


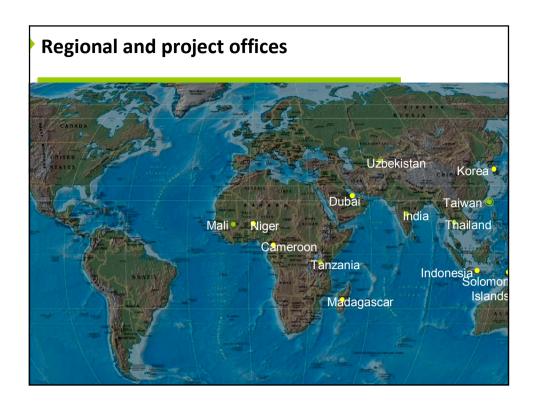


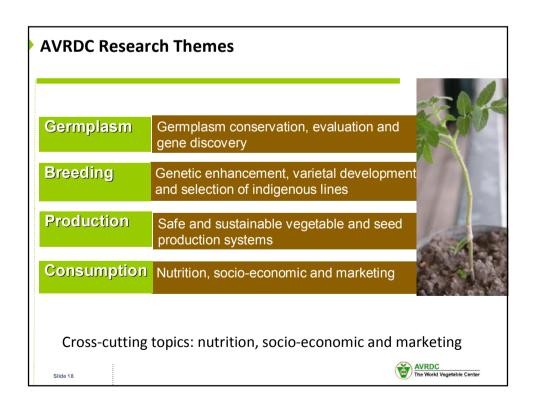




The strength of evidence for obesity, type 2 diabetes, cardiovascular disease (CDV), and cancer				
	Obesity	Type 2 diabetes	CVD	Cancer
High intake of energy-dense foods	C ↑			
High intake of NSP (dietary fibre)	c↓	Ρ↓	P↓	
Wholegrain cereals			Ρ↓	
Fruits and vegetables	c↓	Ρ↓	c↓	Ρ↓
Whole fresh fruits				
Sugars-sweetened soft drinks and fruit juices	Ρ ↑			
Overweight and obesity		c ↑	C ↑	c ↑
Physical activity, regular	c↓	c↓	C↓	c↓
Heavy marketing of energy-dense foods, and fast-food outlets	Ρ ↑			
C↑: Convincing increasing risk; C↓: convincing decreasing risk; P↑: Probable increasing risk; P↓: Probable decreasing risk; P-NR: Probable, no relationship;				
Slide 10 WHO Technical Report Series 916, 2003 The World Vegetable Cen			OC orid Vegetable Center	







- Vegetable germplasm
- Indigenous vegetables and nutrition properties
- Breeding for nutrition
- Agricultural interventions for better nutrition

Strategies to address micronutrient malnutrition:

- Supplementation
- Food fortification
- Dietary modification

Contribution of vegetables to human nutrition and health

Consumption

 Increased access, availability, and consumption of vegetables

Nutrient density

 Improved nutrient and bioactive phytochemical contents

Bio-availability

Enhanced nutrient retention and bioavailability

Nutrition and health outcome

 Assessing the outcomes from the consumption of vegetables on nutrition, public health and overall economic development.

Slide 21

Nutrition approaches

- Improve nutrition and health through food- based and agricultural interventions
- Emphasize direct access to nutritious food
- Link Agriculture Food –Nutrition Social science
- Develop R to D pathway

AVRDC
The World Vegetable Center

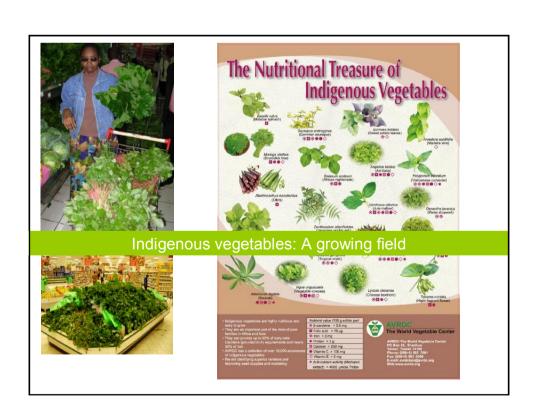
- Vegetable germplasm
- Indigenous vegetables and nutrition properties
- Breeding for nutrition
- Agricultural interventions for better nutrition

Germplasm accessions conserved at AVRDC

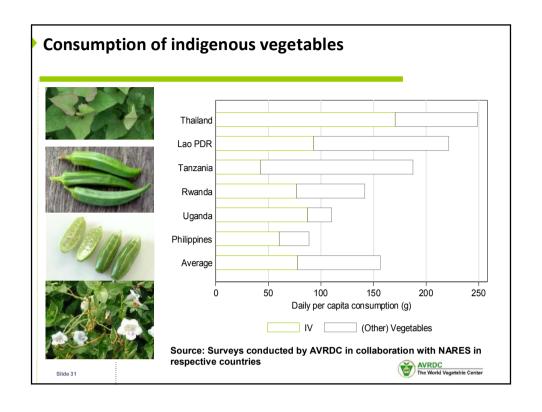
P	rincipal crops	Other crops	Total
No. of accessions	42,820	13,310	56,130
No. of genera	7	153	160
No. of species	111	226	337
No. of countries of orig	in		150

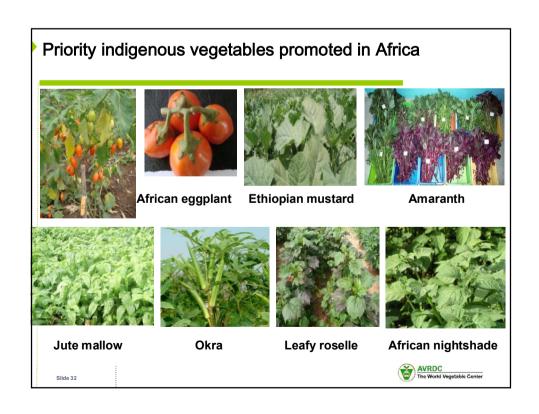
Diversity

- Biodiversity
 - Germplasm collection and conservation
- Crop diversity
 - Breeding for better yield, quality and tropical adaptation
 - Improving farmer's skills in vegetable production
- Food diversity
 - Promotion of greater consumption of vegetables including widely consumed and indigenous/ local vegetables



- Vegetable germplasm
- Indigenous vegetables and nutrition properties
- Breeding for nutrition
- Agricultural interventions for better nutrition




Indigenous vegetables

- Native to a particular region
- Long time use in diets
- Important role in biodiversity and diverse diet
- Grown locally on a small scale
- Often tolerant to environmental stress
- Most underutilized
- Limited Information on nutrient values, bioactive compounds, antinutrients, and potential health hazards

Indigenous vegetable species selected for promotion in				
southeast countries (ADB project,	2000-2006) Source: LM Engle, AVRDC			
1 Abelmoschus esculentus	Okra, smooth and ridged types			
2 Amaranthus spp.	Amaranth			
3 Basella alba	Malabar spinach/Ceylon spinach			
4 Benincasa hispida	Wax gourd			
5 Beta vulgaris cvg bengalensis	Swiss chard group			
6 Brassica oleracea cvg acephala	Kale group			
7 Capsicum	Chillis			
8 Coccinia grandis	Ivy gourd			
9 Corchorus spp.	Jute			
10 Cucurbita moschata	Pumpkin			
11 Cucumis sativus	Cucumber			
12 Dolichos lablab	Hyacinth bean/ lablab bean			
13 Lagenaria siceraria	Bottle gourd			
14 Luffa acutangula	Sponge gourd, ridged type			
15 Luffa aegyptiaca	Sponge gourd, smooth type			
16 Momordica charantia	Bittergourd			
17 Solanum melongena	Eggplant			
1৪ন্দichosanthes cucumerina	Snakegourd The World Vegetable Certiter			

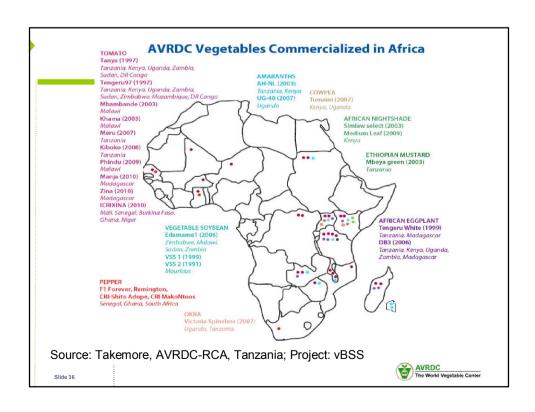
Over 5000 varieties of indigenous vegetables are maintained at AVRDC

Ivy Gourd Coccinia grandis

Tropical violet
Asystasia gangetica

Jute mallow Corchorus olitorius

Okra
Abelmoschus esculentus



Sweet potato vine Ipomoea batatas

Drumstick tree Moringa oleifera

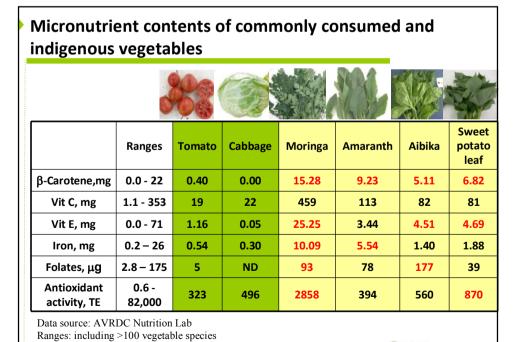
Indigenous vegetable garden at AVRDC, Taiwan

Southern Taiwan: hot-wet, cool-dry tropical climates

Analytical items

- Nutritional quality
 - Protein (AOAC)
 - Vitamins
 - Carotenoids (HPLC)
 - Vitamin C (colorimetric)
 - Tocopherols (HPLC)
 - Folate (Microbial assay)
 - Minerals: (AAS)
 - Calcium, iron, zinc
- Eating quality
 - Dry matter, crude fiber
 - Free sugars (reducing sugar)

• Anti-nutrient factors


- Oxalate (HPLC)
- Polyphenols (Folin)

• Health promoting properties

- Flavonoids (HPLC)
- Glucosinolates (enzymatic)
- Antioxidant activities (ABTS, SOS)
- Anti-microbial activities (diffusion)
- Anti-inflammation (cell)
- Anti-diabetes (cell)

Nutrient content	ranges				
In 100 g fw	N	Min	Max	Mean	SD
Protein, g	243	0.2	10	3	1.6
β -carotene, mg	241	0.0	22	3.1	3.3
Vit. C, mg	243	1.1	353	70	77
Vit. E, mg	243	0.0	71	2.6	5.6
Folates, μg	90	2.8	175	51	40
Ca, mg	243	2	744	121	136
Fe, mg	243	0.2	26	2.1	2.6
Zn, mg	27	0.17	1.24	0.49	0.24
Total phenol, mg	241	17	12,070	444	940
AOA, TE	243	0.63	82,170	1383	5648
Slide 39	Spec	cie no.: ~1	20	AVRE The Woo	OC rkl Vogetable Center

AVRDC
The World Vegetable Center

- Vegetable germplasm
- Indigenous vegetables and nutrition properties
- Breeding for nutrition
- Agricultural interventions for better nutrition

Breeding for better nutrition and health in the tropic (Biofortification)

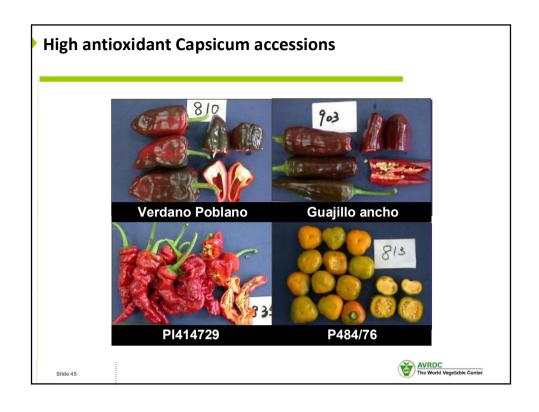
- For widely consumed vegetables crops such as tomato and pepper, modest improvements in micronutrient density would benefit human health
- **Tomato:** Breeding for high beta-carotene, high lycopene, high rutin content
- Pepper: Breeding for high antioxidant and carotenoid paprika
- **Pumpkin:** Selection for high a- and β -carotenes
- **Bitter gourd:** Selection for antioxidant vitamins and anti-diabetic activities
- Leafy crucifer: selection for higher glucosinolates
- **Indigenous vegetables:** selection for high nutrient and low antinutrient content

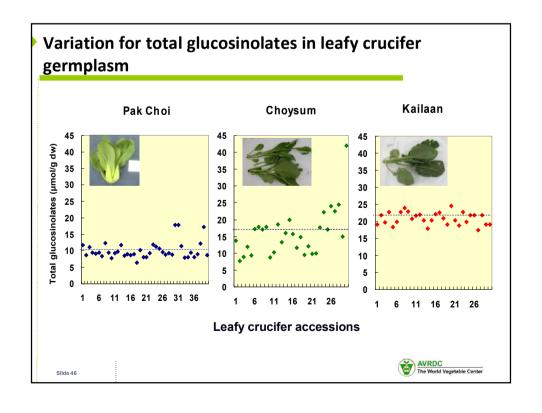
Evaluation of germplasm for breeding materials

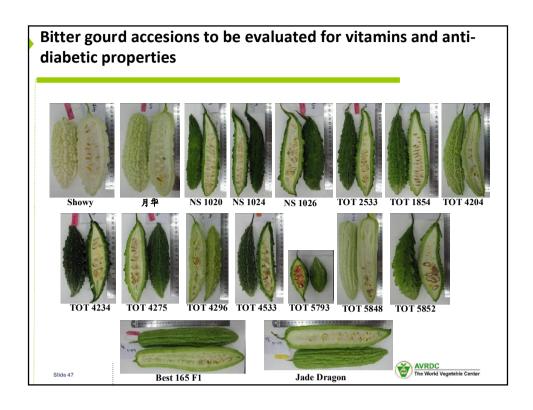
AVRDC
The World Vegetable Certiter

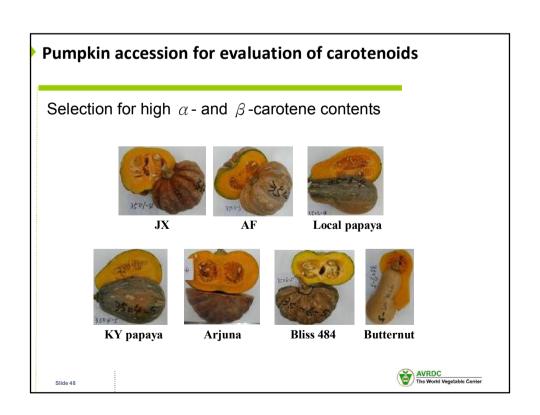
High beta-carotene, high lycopene tomato

- AVRDC high beta-carotene tomato lines in fresh market and cherry market types
- Orange color a challenge for consumer acceptance
- Piggybag with diseases resistant and heat tolerant genes








High beta-fresh, tropical type

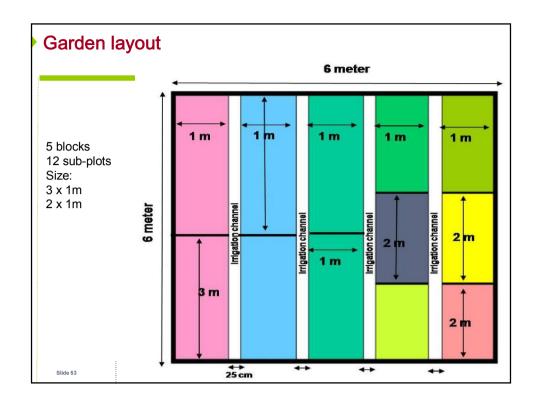
High lycopene, disease resistant, heat tolerant , fresh type wroc The World Vegetable Center

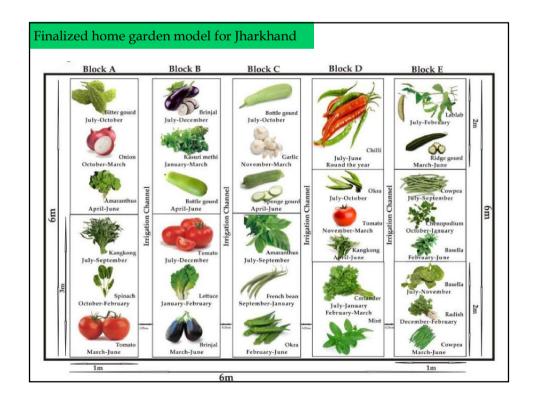
- Vegetable germplasm
- Indigenous vegetables and nutrition properties
- Breeding for nutrition
- Agricultural interventions for better nutrition and health

Challenges

The complex of food and nutrition security

- All people, at all times, have access to sufficient, safe, and nutritious food to meet their dietary needs and food preferences for an active healthy life. (FAO)
- Food should be available, accessible, and consumed to meet nutritional needs.




- **Title:** Improving vegetable production and consumption for sustainable rural livelihoods in Jharkhand and Punjab, India
- **Subproject 2:** Home gardens for diet diversification and better health
 - Goal: To contribute to increased diet diversification and improved household nutrition of rural population in India.
 - Objective: To expand improved home garden practices in the targeted areas of Jharkhand and Punjab

AVRDC
The World Vegetable Center

Slide 51

Major output (op) and operation pathway Research for development OP 2: Baseline information OP 4: OP 3: Home garden Food methods OP 7: integration design Dissemination to project stakeholders Development for action OP 6: OP 5: Technology Capacity building transfer OP 7: Public dissemination through partnership AVRDC The World Vegetable Center Slide 52

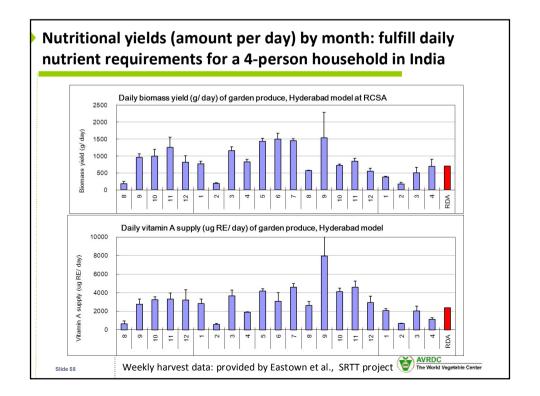
Home garden design for Jharkhand at AVRDC

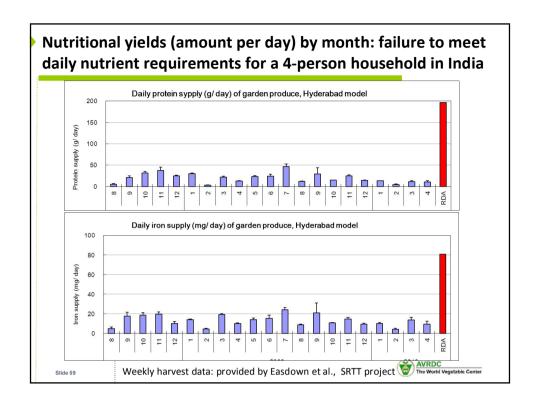
Home garden model design at AVRDC, Hyderabad, India

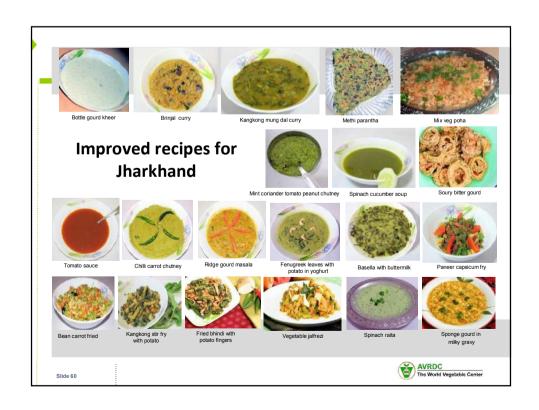
Slide 55

Home garden adopted in Jharkhand

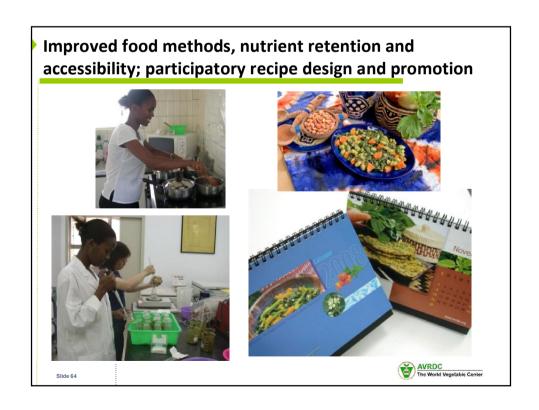
Home garden model at research station




Daily vegetable and nutrient availability of garden produce harvested from 6x6 m home garden models


Nutrient	RDA*	Andhra Pradesh	Punjab	Jharkhand	
		% RDA			
Vegetables, g/d	750	111	60	72	
Energy, kcal/d	8980	3	2	2	
Protein, g/d	196	10	8	7	
Vitamin A, ug RE/d	2400	123	93	69	
Vitamin C, mg/d	160	239	95	127	
Folate, ug DFE/d	670	118	65	56	
Iron, mg/d	81	16	9	9	
Zinc, mg/d	41	12	6	9	

- RDA: Values were the sum of RDA of 4 household members including one adult male and one
 adult female both with moderate physical work, one child of 7-9 year old, and one 14-15 year-old
 girl. RDA data source: NIN (2010)
- Weekly harvest data provided by Easdown et al., SRTT project



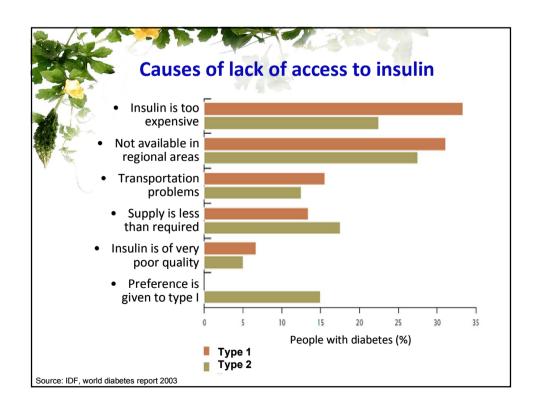
Gardening and physical activity

 Compare energy expenditure, nutritional and environmental effects of working in a 6 x 6 m² vegetable garden versus exercise in a wellness center

Slide 67

Vegetable seed kits for disaster response, rehabilitation, and nutrition relief

 To produce and make appropriate vegetable seed kits available and alleviate nutritional crises and respond to immediate rehabilitation of vegetable production in the most vulnerable farming communities in disaster-affected regions



AVRDC
The World Vegetable Cent

Bitter gourd

A vegetable

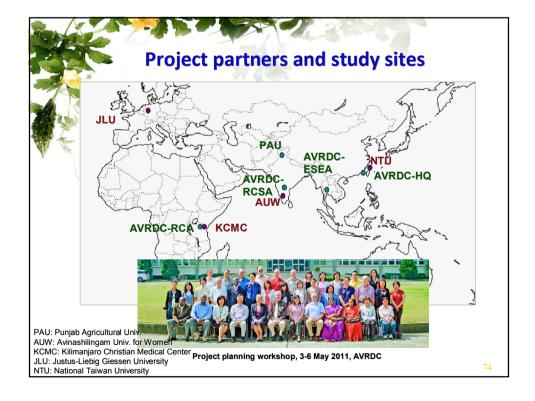
- Popular in India, China, the Philippines, Taiwan, and Japan
- Consumed worldwide,
 particularly in Chinese and
 India communities

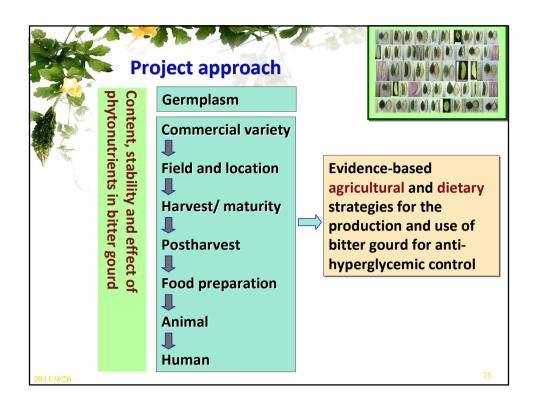
A medicinal plant

- Anti-hyperglycemia
- Anti-hyperlipidemia
- Anti-oxidation
- Anti-inflammation
- Anti-microbial pathogens

BMZ-AVRDC Bitter Gourd Project

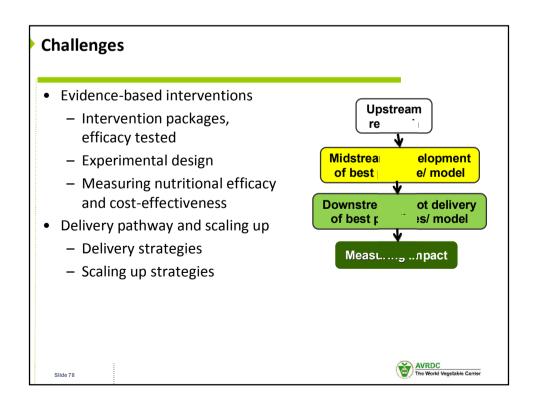
Project title


- A better bitter gourd: Exploiting bitter gourd (Momordica charantia L.) to increase incomes, manage type 2 diabetes, and promote health in developing countries
- Funded by BMZ
 - BMZ: Federal Ministry for Economic Cooperation and Development, Germany
- Project duration:
 - 2011.03.01 2014.02.28


011/9/26

Project goal and objectives

- Goal
 - Improved income and quality of life of diabetics in developing countries
- Objectives
 - Optimize production of anti-diabetic compounds in bitter gourd through varietal selection, postharvest practices, and preparation methods
 - Develop evidence-based dietary strategies using bitter gourd to reduce hyperglycemia (high blood sugar) in type 2 diabetic populations in Asia and Africa


11/9/26

